perm filename A01.OLD[154,RWF] blob
sn#776337 filedate 1984-11-14 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 \rm
C00004 ENDMK
C⊗;
\rm
\magnification=\magstephalf
\def\today{\ifcase\month\or
January\or February\or March\or April\or May\or June\or
July\or August\or September\or October\or November\or December\fi
\space\number\day, \number\year}
\line{\sevenrm A01.tex[154,rwf] \today\hfill}
\vskip 1in
\noindent
Question:
How many generators are required to get, by composition, all the functions
on $\{1,2,\ldots ,n\}$?
\vskip .125in
\noindent
Answer:
3 are necessary and sufficient for $n≥3$; $f(x)=1$ and $g(x)=3-x$ are
necessary and sufficient for $n=2$. The two permutations $p=(1234\ldots n)$
and $q=(12)(3)(4)\ldots (n)$ generate all the other permutations, and
adding the function $f(x)=$ if $x=2$ then 1 else $x$ gets everything else.
\vfil\end